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On June 26, 2022, a dead killer whale (Orcinus orca) was found 48 km off the coast of 

Newport, Oregon entangled in presumed recreational Dungeness crab (Metacarcinus magister) 

fishery gear, a crab pot and line. The line was wound around the peduncle, proximal to the fluke 

(Figure 1). A recreational angler photographed the whale and submitted a set of images of the 

animal’s ventral side to an online forum (http://www.ifish.net). Identifying the individual was 

not possible from these images, as the visible features did not include those commonly used in 

killer whale photo identification (Bigg et al., 1990; Young et al., 2011). The Oregon Marine 

Mammal Stranding Network (OMMSN) was informed and promptly notified the U.S. National 

Oceanic and Atmospheric Administration (NOAA) Fisheries Service, leading to aerial and 

seaborne responses by the U.S. Coast Guard. 

The carcass was not found off Newport but instead re-sighted on July 7, 2022, off the 

coast of Bandon, Oregon—over 160 km south—by another recreational angler. By this point, the 

carcass had undergone substantial taphonomic change. The primary posterior elements were 

degraded down to the skeleton; the crab pot and line were still attached to the whale (Figure 1b, 

1c). The second reporting party cut the line and trap free from the carcass and turned the gear in 

to the Port of Bandon (https://www.portofbandon.com/). OMMSN recovered the gear and 

transported it to Oregon State University’s (OSU) Hatfield Marine Science Center (HMSC) in 

Newport. The crab pot measured 89.5 cm in diameter, 25.0 cm high, and had a mesh size of 6.0 

cm. There were no identifiable serial markers on the trap or buoys due to exposure and fouling 

(Figure 1). 
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[Figure 1 here] 

Figure 1a. A map of the Oregon Coast with red points denoting the sighting locations and dates of the dead 

entangled killer whale. 1b. The carcass was first sighted offshore of Newport, Oregon on June 26, 2022. Photo taken 

by Don Grim. 1c. The killer whale carcass was last observed on July 7, 2022 offshore Bandon, Oregon, where the 

debris was removed by the reporting party. Photo by Mark Eason. 1d. A speculative life illustration of the killer 

whale with the site of entanglement circled in red. Illustration by Charles Nye. 

The public and the NOAA regional office expressed an interest in identifying the ecotype 

(a behaviorally and morphologically distinct sympatric group within a species) of the carcass 

(Bigg et al., 1990; Bruyn et al., 2013; Ford et al., 1998). Killer whales that inhabit the coastal 

waters of the Northeast Pacific are relatively well-documented from both traditional 

identification methods (i.e., distinguishing physical attributes, acoustics, and morphology) and 

genetic markers (Baker et al., 2018; Hoelzel et al., 1991; Zerbini et al., 2007; Young et al., 2011; 

Parsons et al., 2013). Several ecotypes and populations occupy this region of the ocean, 

including Northern Resident killer whales (NRKWs), Southern Resident killer whales (SKRWs), 

Transient (or Bigg’s) killer whales (TBKWs), and Offshore killer whales (OSKWs) (Bigg et al., 

1990; Hoelzel & Dover, 1990; Ford et al., 1998; Dalheim et al., 2008). In the U.S., two Pacific 

killer whale groups are recognized as separate management units: the Alaskan TBKW AT1 

population, which is considered Depleted following the Exxon Valdez oil spill of 1989, and the 

SRKWs, which are Endangered under the U.S. Endangered Species Act (ESA) (Carretta et al., 

2019;  Muto et al., 2019). In Canada, most killer whale populations are defined as Threatened 

under Schedule 1 of the Species at Risk Act, with SRKWs considered Endangered (Fisheries and 

Oceans Canada, 2017). 

Killer whale ecotypes are distinguishable using a fragment of the mitochondrial genome 

known as the control region, or “d-loop” (Zerbini et al., 2007; Parsons et al., 2013; Baker et al., 
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2018). Although no tissue samples had been collected from the dead whale, we considered it 

likely that prolonged contact with the crabbing line would have inundated sections of the gear 

with recoverable DNA. Given the prolonged environmental exposure and decay of the body, we 

hypothesized that any usable genetic material would likely originate from the mitogenome, as is 

common in these environments (Bylemans et al., 2018). 

Here, we present evidence for the ecotype origin of the entangled killer whale using 

investigative molecular methods. The crab pot and line were measured and photographed at the 

OMMSN necropsy lab at HMSC. Photos of the entangled carcass in situ were cross-referenced 

to locate sections of the line that were near or in direct contact with the deceased killer whale 

(Figure 1c, 1d). Using further visual and olfactory assessments, a ~5 cm portion of suspected 

organic material, along with a small portion of the line, was peeled off the gear with sterilized 

forceps and stored in a 10 mL glass scintillation vial. 

We initially employed a metabarcoding approach to discern if any mtDNA was 

recoverable from the line sample, regardless of the species of origin. Genomic DNA was 

extracted from two >0.01 g subsamples using a QIAGEN DNeasy Blood and Tissue kit to the 

manufacturer’s specifications. Sequencing was conducted on an Illumina MiSeq platform 

(SCR_016379) at OSU’s Center for Qualitative Life Studies (CQLS). Following laboratory 

protocols detailed by Closek et al. (2018), we confirmed the presence of killer whale 

mitochondrial DNA by first PCR amplifying a 313-bp fragment of the common metabarcoding 

locus, cytochrome C oxidase subunit I (COI) (Leray et al., 2013). Amplicon sequence variants 

(ASVs) were quality-controlled and aligned using the program DADA2 in the CALeDNA 

Anacapa Toolkit (Callahan et al., 2016; Curd et al., 2019). 
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Taxonomic information was assigned to each ASV from a BLAST query of the full 

NCBI GenBank database, with any ASV below 5% of the average read count across the entire 

dataset being removed. Identifiable ASVs were secondarily validated using the Barcode of Life 

Data System (BOLD) database (Ratashingham & Herbert, 2007). From this exploratory step, we 

were able to confirm the presence of killer whale mtDNA; the associated ASV was a 100% 

match to the mtCOI sequence of killer whale ecotypes associated with the greater Northeast 

Pacific region (Filavota et al., 2018). Two additional taxa, gooseneck barnacle (Lepas pectinata) 

and a genus of rotifer (Synchaeta spp.), were also identified from these samples (Figure 2). We 

attribute the sequence abundance of these additional taxa, particularly of L. pectinata, to fouling 

on the crab pot and line that occurred during the gear’s prolonged residence at sea. 

[Figure 2 here] 

Figure 2. Read abundances belonging to amplicon sequence variants (ASVs) identified to the species level in two 

suspected samples of killer whales taken from the entanglement line. The target 313-base-pair fragment of 

cytochrome C oxidase subunit I (COI) was amplified using degenerate metabarcoding primers designed by Leray et 

al. (2013). 

Additional PCR assays were then conducted, targeting a ~690 base-pair fragment of the 

cetacean mtDNA control region (d-loop 1.5-8) which encompasses key informative loci for 

discriminating killer whale ecotypes and populations (Morin et al., 2010). The PCR products 

were purified and Sanger sequenced in the forward and reverse directions on an ABI3730xl 

platform. Only the second subsample was successfully amplified and sequenced for this locus, 

which is referred to hereon with its NCBI accession as OR661229 HMSC. Alignment and 

quantitative treatments for the resultant data were performed using the software package 

Geneious Prime (Version 2021.1.1) and a comprehensive dataset of unique killer whale mtDNA 

sequences (haplotypes) published by Zerbini et al. (2007) and Morin et al. (2010). We used a 
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Tamura-Nei distance for the mtDNA sequences, with a neighbor-joining tree (bootstrap 

resampling, n = 9,999) to visualize genetic distances (Figure 3). 

[Figure 3 here] 

Figure 3. A bootstrapped neighbor-joining tree (mid-point rooted) of killer whale mtDNA control region sequences 

generated using Tamura-Nei distance (resampled n = 9,999). The values shown are bootstrap values (% replicates 

that resolve to the depicted identity). Haplotypes in boxed in gray are Resident and Offshore killer whales; 

haplotypes boxed in blue are Transient/Bigg’s killer whales. The sequence from the entangled killer whale described 

in this paper is positioned at the bold blue text as “OR661229 HMSC.” Additional mtDNA sequences used were 

sourced from Morin et al. (2010) and Zerbini et al. (2007). 

The d-loop 1.5-8 control region sequence amplified from the entangled killer whale was a 

100% match to the published mitogenome of the TBKW haplotype ENPTSEA2 from the 

Northeast Pacific (Morin et al., 2010). All TBKW haplotypes cluster closely at nearly 98% 

bootstrapped confidence; haplotypes belonging to the other primary ecotypes are represented in a 

separate clade from the TBKWs (Figure 3). Comparing OR661229 HMSC to the SRKW 

haplotype SR, there are 7 variable nucleotide site differences in the alignment in addition to the 

apparent phylogenetic distance (Supplementary Table 1; Figure 3). We consider the results of the 

phylogenetic reconstruction sufficient to conclude that the entangled individual was a TBKW 

and not a SRKW, with high confidence it was of the ENPTSEA2 haplotype. Visible ventral 

markings from the entangled TBKW suggest it was a young male (Figure 1b) but we have been 

unable to confirm this using standard molecular markers for sex identification, presumably due 

to the degradation of the nuclear DNA (Bylemans et al., 2018). 

Our findings demonstrate both the diagnostic capabilities of genetic sampling and the 

surprising residency of recoverable mtDNA from anthropogenic debris. mtDNA barcoding has 

been used in other wildlife forensics applications, from identifying endangered taxa traded in 

6 



 

 

   

  

      

   

   

  

  

   

   

   

    

   

   

      

   

  

     

   

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

Ecotype entangled killer whale mtDNA 

markets to shark species from bite wounds (Baker 2008; Kraft et al., 2021; Lee et al., 2021). 

Genetic identification of marine mammal carcasses is standard for U.S.-based stranding 

networks, but we stress there may be added value from genetic analysis of marine debris 

associated with marine mammal entanglements, particularly in helping to assign an 

anthropogenic mortality event to ecotypes or Distinct Population Segments (Baulch and Perry, 

2014; Carretta et al., 2021). 
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258 Supplementary Table 1.  A  variable sites table  of  the killer whale  control region  haplotype alignments,  with the  

entangled killer  whale’s sequence highlighted in yellow as the  basis  for comparison.  Variable nucleotides are 

highlighted in blue.  
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