1	Ecotype Origin of an Entangled Killer Whale (Orcinus orca) Identified with
2	Remnant mtDNA
3	Charles Nye ¹ , Kim Parsons ² , James Rice ¹ , C. Scott Baker ¹
4	¹ Oregon State University Marine Mammal Institute, 2030 Southeast Marine Science Drive,
5	Newport, OR 97365, USA
6	Email: charles.nye@oregonstate.edu
7	² Northwest Fisheries Science Center, 2725 Montlake Boulevard East, Seattle, WA 98112

8	On June 26, 2022, a dead killer whale (Orcinus orca) was found 48 km off the coast of
9	Newport, Oregon entangled in presumed recreational Dungeness crab (Metacarcinus magister)
10	fishery gear, a crab pot and line. The line was wound around the peduncle, proximal to the fluke
11	(Figure 1). A recreational angler photographed the whale and submitted a set of images of the
12	animal's ventral side to an online forum (http://www.ifish.net). Identifying the individual was
13	not possible from these images, as the visible features did not include those commonly used in
14	killer whale photo identification (Bigg et al., 1990; Young et al., 2011). The Oregon Marine
15	Mammal Stranding Network (OMMSN) was informed and promptly notified the U.S. National
16	Oceanic and Atmospheric Administration (NOAA) Fisheries Service, leading to aerial and
17	seaborne responses by the U.S. Coast Guard.
18	The carcass was not found off Newport but instead re-sighted on July 7, 2022, off the
19	coast of Bandon, Oregon—over 160 km south—by another recreational angler. By this point, the
20	carcass had undergone substantial taphonomic change. The primary posterior elements were
21	degraded down to the skeleton; the crab pot and line were still attached to the whale (Figure 1b,
22	1c). The second reporting party cut the line and trap free from the carcass and turned the gear in
23	to the Port of Bandon (https://www.portofbandon.com/). OMMSN recovered the gear and
24	transported it to Oregon State University's (OSU) Hatfield Marine Science Center (HMSC) in
25	Newport. The crab pot measured 89.5 cm in diameter, 25.0 cm high, and had a mesh size of 6.0
26	cm. There were no identifiable serial markers on the trap or buoys due to exposure and fouling
27	(Figure 1).

28	[Figure 1 here]
29	Figure 1a. A map of the Oregon Coast with red points denoting the sighting locations and dates of the dead
30	entangled killer whale. 1b. The carcass was first sighted offshore of Newport, Oregon on June 26, 2022. Photo taken
31	by Don Grim. 1c. The killer whale carcass was last observed on July 7, 2022 offshore Bandon, Oregon, where the
32	debris was removed by the reporting party. Photo by Mark Eason. 1d. A speculative life illustration of the killer
33	whale with the site of entanglement circled in red. Illustration by Charles Nye.
34	The public and the NOAA regional office expressed an interest in identifying the ecotype
35	(a behaviorally and morphologically distinct sympatric group within a species) of the carcass
36	(Bigg et al., 1990; Bruyn et al., 2013; Ford et al., 1998). Killer whales that inhabit the coastal
37	waters of the Northeast Pacific are relatively well-documented from both traditional
38	identification methods (i.e., distinguishing physical attributes, acoustics, and morphology) and
39	genetic markers (Baker et al., 2018; Hoelzel et al., 1991; Zerbini et al., 2007; Young et al., 2011;
40	Parsons et al., 2013). Several ecotypes and populations occupy this region of the ocean,
41	including Northern Resident killer whales (NRKWs), Southern Resident killer whales (SKRWs),
42	Transient (or Bigg's) killer whales (TBKWs), and Offshore killer whales (OSKWs) (Bigg et al.,
43	1990; Hoelzel & Dover, 1990; Ford et al., 1998; Dalheim et al., 2008). In the U.S., two Pacific
44	killer whale groups are recognized as separate management units: the Alaskan TBKW AT1
45	population, which is considered Depleted following the Exxon Valdez oil spill of 1989, and the
46	SRKWs, which are Endangered under the U.S. Endangered Species Act (ESA) (Carretta et al.,
47	2019; Muto et al., 2019). In Canada, most killer whale populations are defined as Threatened
48	under Schedule 1 of the Species at Risk Act, with SRKWs considered Endangered (Fisheries and
49	Oceans Canada, 2017).
50	Killer whale ecotypes are distinguishable using a fragment of the mitochondrial genome

51 known as the control region, or "d-loop" (Zerbini et al., 2007; Parsons et al., 2013; Baker et al.,

52 2018). Although no tissue samples had been collected from the dead whale, we considered it 53 likely that prolonged contact with the crabbing line would have inundated sections of the gear 54 with recoverable DNA. Given the prolonged environmental exposure and decay of the body, we 55 hypothesized that any usable genetic material would likely originate from the mitogenome, as is 56 common in these environments (Bylemans et al., 2018).

Here, we present evidence for the ecotype origin of the entangled killer whale using investigative molecular methods. The crab pot and line were measured and photographed at the OMMSN necropsy lab at HMSC. Photos of the entangled carcass in situ were cross-referenced to locate sections of the line that were near or in direct contact with the deceased killer whale (Figure 1c, 1d). Using further visual and olfactory assessments, a ~5 cm portion of suspected organic material, along with a small portion of the line, was peeled off the gear with sterilized forceps and stored in a 10 mL glass scintillation vial.

64 We initially employed a metabarcoding approach to discern if any mtDNA was 65 recoverable from the line sample, regardless of the species of origin. Genomic DNA was 66 extracted from two >0.01 g subsamples using a QIAGEN DNeasy Blood and Tissue kit to the 67 manufacturer's specifications. Sequencing was conducted on an Illumina MiSeq platform 68 (SCR 016379) at OSU's Center for Qualitative Life Studies (CQLS). Following laboratory 69 protocols detailed by Closek et al. (2018), we confirmed the presence of killer whale 70 mitochondrial DNA by first PCR amplifying a 313-bp fragment of the common metabarcoding 71 locus, cytochrome C oxidase subunit I (COI) (Leray et al., 2013). Amplicon sequence variants 72 (ASVs) were quality-controlled and aligned using the program DADA2 in the CALeDNA 73 Anacapa Toolkit (Callahan et al., 2016; Curd et al., 2019).

ss the entire rcode of Life ratory step, we s a 100% Northeast <i>pas pectinata</i>) Figure 2). We <i>ata</i> , to fouling
ratory step, we s a 100% Northeast <i>pas pectinata</i>) Figure 2). We <i>ata</i> , to fouling
s a 100% Northeast <i>pas pectinata</i>) Figure 2). We <i>ata</i> , to fouling
Northeast <i>pas pectinata</i>) Figure 2). We <i>ata</i> , to fouling
<i>pas pectinata</i>) Figure 2). We <i>ata</i> , to fouling
figure 2). We <i>ata</i> , to fouling
ata, to fouling
ecies level in two
r fragment of
igned by Leray et
agment of the
e loci for
R products
r producis
BI3730x1
1
BI3730x1
BI3730x1 or this locus,
BI3730x1 or this locus, nent and
agment of the re loci for

98	Tamura-Nei distance for the mtDNA sequences, with a neighbor-joining tree (bootstrap
99	resampling, $n = 9,999$) to visualize genetic distances (Figure 3).
100	[Figure 3 here]
101	Figure 3. A bootstrapped neighbor-joining tree (mid-point rooted) of killer whale mtDNA control region sequences
102	generated using Tamura-Nei distance (resampled n = 9,999). The values shown are bootstrap values (% replicates
103	that resolve to the depicted identity). Haplotypes in boxed in gray are Resident and Offshore killer whales;
104	haplotypes boxed in blue are Transient/Bigg's killer whales. The sequence from the entangled killer whale described
105	in this paper is positioned at the bold blue text as "OR661229 HMSC." Additional mtDNA sequences used were
106	sourced from Morin et al. (2010) and Zerbini et al. (2007).
107	The d-loop 1.5-8 control region sequence amplified from the entangled killer whale was a
108	100% match to the published mitogenome of the TBKW haplotype ENPTSEA2 from the
109	Northeast Pacific (Morin et al., 2010). All TBKW haplotypes cluster closely at nearly 98%
110	bootstrapped confidence; haplotypes belonging to the other primary ecotypes are represented in a
111	separate clade from the TBKWs (Figure 3). Comparing OR661229 HMSC to the SRKW
112	haplotype SR, there are 7 variable nucleotide site differences in the alignment in addition to the
113	apparent phylogenetic distance (Supplementary Table 1; Figure 3). We consider the results of the
114	phylogenetic reconstruction sufficient to conclude that the entangled individual was a TBKW
115	and not a SRKW, with high confidence it was of the ENPTSEA2 haplotype. Visible ventral
116	markings from the entangled TBKW suggest it was a young male (Figure 1b) but we have been
117	unable to confirm this using standard molecular markers for sex identification, presumably due
118	to the degradation of the nuclear DNA (Bylemans et al., 2018).
119	Our findings demonstrate both the diagnostic capabilities of genetic sampling and the
120	surprising residency of recoverable mtDNA from anthropogenic debris. mtDNA barcoding has
121	been used in other wildlife forensics applications, from identifying endangered taxa traded in

markets to shark species from bite wounds (Baker 2008; Kraft et al., 2021; Lee et al., 2021).
Genetic identification of marine mammal carcasses is standard for U.S.-based stranding
networks, but we stress there may be added value from genetic analysis of marine debris
associated with marine mammal entanglements, particularly in helping to assign an
anthropogenic mortality event to ecotypes or Distinct Population Segments (Baulch and Perry,
2014; Carretta et al., 2021).

128 Acknowledgments

129 The authors would like to thank and acknowledge Debbie Steel and Angela Sremba for 130 additional laboratory and methodological assistance. We would also like to extend our gratitude 131 to Don Grim and Mark Eason, who initially reported the killer whale carcass and recovered the 132 entanglement gear, respectively. Collection and handling of cetacean material was conducted in 133 accordance with NMFS MMPA/ESA Scientific Research Permit, No. 23092, OSU IACUC-134 2021-20204, and the formal Stranding Agreement (SA) between Oregon State University and the 135 NOAA Fisheries West Coast Marine Mammal Stranding Network, per Section 112(c) of the 136 Marine Mammal Protection Act (NMFS MMPA/ESA permit No. 18786-06). Funding for sample 137 collection and processing was supported by the John H. Prescott Marine Mammal Rescue 138 Assistance Grant Program and the OSU Marine Mammal Institute Gray Whale License Plate

139 Fund.

140 Literature Cited

- Baker, C. S. (2008). A truer measure of the market: The molecular ecology of fisheries and
 wildlife trade. Molecular Ecology, 17(18), 3985–3998. https://doi.org/10.1111/j.1365
 294X.2008.03867.x
- Baker, C. S., Steel, D., Nieukirk, S., & Klinck, H. (2018). Environmental DNA (eDNA) From
 the Wake of the Whales: Droplet Digital PCR for Detection and Species Identification.
 Frontiers in Marine Science, 5, 133. https://doi.org/10.3389/fmars.2018.00133
- 147 Baulch, S., & Perry, C. (2014). Evaluating the impacts of marine debris on cetaceans. Marine
- 148 Pollution Bulletin, 80(1–2), 210–221. https://doi.org/10.1016/j.marpolbul.2013.12.050
- 149 Bylemans, J., Furlan, E. M., Gleeson, D. M., Hardy, C. M., & Duncan, R. P. (2018). Does Size
- 150 Matter? An Experimental Evaluation of the Relative Abundance and Decay Rates of
- 151 Aquatic Environmental DNA. Environmental Science & Technology, 52(11), 6408
- 152 6416. https://doi.org/10.1021/acs.est.8b01071
- 153 Bigg, M.A., Olesiuk, P.F., Ellis, G.M. (1990). Social Organization and Genealogy of Resident
- 154 Killer Whales (*Orcinus orca*) in the Coastal Waters of British Columbia and Washington

155 State. Report - International Whaling Commission. 12(12), 383-405.

- 156 Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., & Holmes, S. P.
- 157 (2016). DADA2: High-resolution sample inference from Illumina amplicon data. Nature
 158 Methods, 13(7), 581–583. https://doi.org/10.1038/nmeth.3869
- 159 Carretta, J. V., Forney, K., Oleson, E. M., Weller, D. W., Lang, A. R., Daniel, J., Muto, M.,
- 160 Hanson, B., Orr, A. J., Huber, H. R., et al. (2019). U.S. Pacific Marine Mammal Stock
- 161 Assessments: 2018. https://doi.org/10.25923/x17q-2p43
- 162 Carretta, J. V., Weller, D.W., Lang, A.R., Forney, A., Baker, J., Hanson, M.B., Martien, K.K.,

163	Muto, M. M., Orr, A. J., Huber, H., et al. 2014. U.S. Pacific Marine Mammal Stock
164	Assessments, 2013.
165	Carretta, J.V., Greenman, J., Wilkinson, K., Freed, J., Saez, L., Lawson, D., Viezbicke, J.,
166	Jannot, J. (2021). Sources of Human-related Injury and Mortality for U.S. Pacific West
167	Coast Marine Mammal Stock Assessments, 2015-2019. https://doi.org/10.25923/cwre
168	v564
169	Caretta, J. V., Muto, M. M., Greenman, J., Wilkinson, K., Lawson, D., Viezbicke, J., & Jannot, J.
170	(2017). Sources of human-related injury and mortality for U.S. Pacific west coast marine
171	mammal stock assessments, 2011-2015. https://doi.org/10.7289/V5/TM-SWFSC-579
172	Closek, C., Djurhuus, A., Pitz, K., Kelly, R., Michisaki, R., Walz, K., Starks, K., Chavez, F.,
173	Boehm, A., & Breitbart, M. (2018). Environmental DNA (eDNA) COI metabarcoding
174	Illumina MiSeq NGS PCR Protocol. protocols.io. doi:10.17504/protocols.io.mwnc7de.
175	Curd, E.E., Gold, Z., Kandlikar, G.S., Gomer, J., Ogden, M., O'Connell, T., Pipes, L.,
176	Schweizer, T.M., Rabichow, L., Lin, M., Shi, B., Barber, P.H., Kraft, N., Wayne, R.,
177	Meyer, R.S., & Meyer, R. S. (2019). Anacapa Toolkit : An environmental DNA toolkit
178	for processing multilocus metabarcode datasets. Methods in Ecology and Evolution,
179	10(9), 1469–1475. https://doi.org/10.1111/2041-210X.13214
180	Dahlheim, M.E., Schulman-Janiger, A., Black, N., Ternullo, R., Ellifrit, D., & Balcomb III,
181	K.C. (2008). Eastern temperate North Pacific offshore killer whales (Orcinus orca):
182	Occurrence, movements, and insights into feeding ecology. Marine Mammal Science, 24:
183	719-729. https://doi.org/10.1111/j.1748-7692.2008.00206.x
184	Derville, S., Buell, T. V., Corbett, K. C., Hayslip, C., & Torres, L. G. (2023). Exposure of
185	whales to entanglement risk in Dungeness crab fishing gear in Oregon, USA, reveals

186	distinctive spatio-temporal and climatic patterns. Biological Conservation, 281, 109989.
187	https://doi.org/10.1016/j.biocon.2023.109989
188	Emmons, C. K., Hanson, M. B., & Lammers, M. O. (2018). Monitoring the occurrence of
189	Southern resident killer whales, other marine mammals, and anthropogenic sound in the
190	Pacific Northwest.
191	Feist, B. E., Samhouri, J. F., Forney, K. A., & Saez, & L. E. (2021). Footprints of fixed-gear
192	fisheries in relation to rising whale entanglements on the U.S. West Coast. Fisheries
193	Management and Ecology, 28(3), 283–294. https://doi.org/10.1111/fme.12478
194	Filatova, O. A., Borisova, E. A., Meschersky, I. G., Logacheva, M. D., Kuzkina, N. V., Shpak,
195	O. V., Morin, P. A., & Hoyt, E. (2018). Colonizing the Wild West: Low Diversity of
196	Complete Mitochondrial Genomes in Western North Pacific Killer Whales Suggests a
197	Founder Effect. Journal of Heredity. https://doi.org/10.1093/jhered/esy037
198	Fisheries and Oceans Canada. 2017. Action Plan for the Northern and Southern Resident Killer
199	Whale (Orcinus orca) in Canada. Species at Risk Act Action Plan Series. Fisheries and
200	Oceans Canada, Ottawa. v + 33 pp.
201	Hoelzel, A. R., & Dover, G. A. (1991a). Genetic differentiation between sympatric Killer whale
202	populations. Heredity, 66(2), 191-195. https://doi.org/10.1038/hdy.1991.24
203	Hoelzel, A. R., Hancock, J. M., & Dover, G. A (1991). Evolution of the cetacean mitochondrial
204	D-loop region. Molecular Biology and Evolution, 8 (4), 475–493.
205	https://doi.org/10.1093/oxfordjournals.molbev.a040662
206	Kraft, D., Meyer, L., Webb, M., Scidmore-Rossing, K., Huveneers, C., Clua, E., Meyer, C.
207	(2021). Development and successful real-world use of a transfer DNA technique to
208	identify species involved in shark bite incidents. Journal of Forensic Sciences, 66(6),

209	2438-2443. https://doi.org/10.1111/1556-4029.14808
210	Jensen, O., Forney, K., Barlow, J., Hatfield, B., Lowry, M. (2000). A biogeographic
211	assessment of the Channel Islands National Marine Sanctuary: a review of boundary
212	expansion concepts for NOAA's National Marine Sanctuary Program, Chapter 6
213	Biogeography of Marine Mammals.
214	Knowlton, A., Hamilton, P., Marx, M., Pettis, H., & Kraus, S. (2012). Monitoring North Atlantic
215	right whale Eubalaena glacialis entanglement rates: A 30 yr retrospective. Marine
216	Ecology Progress Series, 466, 293-302. https://doi.org/10.3354/meps09923
217	Kraft, D., Meyer, L., Webb, M., Scidmore-Rossing, K., Huveneers, C., Clua, E., & Meyer, C.
218	(2021). Development and successful real-world use of a transfer DNA technique to
219	identify species involved in shark bite incidents. Journal of Forensic Sciences, 66(6),
220	2438-2443. https://doi.org/10.1111/1556-4029.14808
221	Lee, HT., Liao, CH., & Hsu, TH. (2021). Environmental DNA (eDNA) Metabarcoding in
222	the Fish Market and Nearby Seafood Restaurants in Taiwan Reveals the Underestimation
223	of Fish Species Diversity in Seafood. Biology, 10(11), 1132.
224	https://doi.org/10.3390/biology10111132
225	Morin, P. A., Archer, F. I., Foote, A. D., Vilstrup, J., Allen, E. E., Wade, P., Durban, J., Parsons,
226	K., Pitman, R., Li, L., Bouffard, P., Abel Nielsen, S. C., Rasmussen, M., Willerslev, E.,
227	Gilbert, M. T. P., & Harkins, T. (2010). Complete mitochondrial genome
228	phylogeographic analysis of killer whales (Orcinus orca) indicates multiple species.
229	Genome Research, 20(7), 908–916. https://doi.org/10.1101/gr.102954.109
230	Muto, M.M., Helker, V.T., Angliss, R.P., Boveng. P.L., Breiwick, J.M., Cameron, M.F.,
231	Clapham, P.J., Dahle, S.P., Dahlheim, M.E., Fadely, B.S., Ferguson, M.C., Fritz, L.W.,

232	Hobbs, R.C., Ivashchenko, Y.V., Kennedy, A.S., London, J.M., Mizroch, S.A., Ream,
233	R.R., Richmond, E.L., Shelden, K.E.W., Sweeney, K.L., Towell, R.G., Wade, P.R.,
234	Waite, J.M., Zerbini, A.N. (2019). Alaska Marine Mammal Stock Assessments, 2018.
235	NOAA Technical Memorandum NMFS-AFSC 393:i-v, 1-390.
236	Parsons, K. M., Durban, J. W., Burdin, A. M., Burkanov, V. N., Pitman, R. L., Barlow, J.,
237	Barrett-Lennard, L. G., LeDuc, R. G., Robertson, K. M., Matkin, C. O., & Wade, P. R.
238	(2013). Geographic Patterns of Genetic Differentiation among Killer Whales in the
239	Northern North Pacific. Journal of Heredity, 104(6), 737-754.
240	https://doi.org/10.1093/jhered/est037
241	Raverty, S., St. Leger, J., Noren, D. P., Burek Huntington, K., Rotstein, D. S., Gulland, F. M. D.,
242	Ford, J. K. B., Hanson, M. B., Lambourn, D. M., Huggins, J., Delaney, M. A., Spaven,
243	L., Rowles, T., Barre, L., Cottrell, P., Ellis, G., Goldstein, T., Terio, K., Duffield, D.,
244	Gaydos, J. K. (2020). Pathology findings and correlation with body condition index in
245	stranded killer whales (Orcinus orca) in the northeastern Pacific and Hawaii from 2004
246	to 2013. PLOS ONE, 15(12), e0242505. https://doi.org/10.1371/journal.pone.0242505
247	Samhouri, J. F., Feist, B. E., Fisher, M. C., Liu, O., Woodman, S. M., Abrahms, B., Forney, K.
248	A., Hazen, E. L., Lawson, D., Redfern, J., & Saez, L. E. (2021). Marine heatwave
249	challenges solutions to human-wildlife conflict. Proceedings of the Royal Society B:
250	Biological Sciences, 288(1964), 20211607. https://doi.org/10.1098/rspb.2021.1607
251	Young, B.G., Higdon, J.W., Ferguson, & S.H. (2011). Killer whale (Orcinus orca) photo
252	identification in the eastern Canadian Arctic. Polar Research, 30(1), 7203.
253	https://doi.org/10.3402/polar.v30i0.7203
254	Zerbini, A. N., Waite, J. M., Durban, J. W., LeDuc, R., Dahlheim, M. E., & Wade, P. R. (2007).

- 255 Estimating abundance of killer whales in the nearshore waters of the Gulf of Alaska and
- Aleutian Islands using line-transect sampling. Marine Biology, 150(5), 1033–1045.
- 257 https://doi.org/10.1007/s00227-006-0347-8

- 258 Supplementary Table 1. A variable sites table of the killer whale control region haplotype alignments, with the
- entangled killer whale's sequence highlighted in yellow as the basis for comparison. Variable nucleotides are
- 260

highlighted in blue.

Genbank Code / Haplotype Corresponding KW Ecot	Corresponding KW Ecotype	9	133	147	276	284	304	392	409	458	503	505	542	626
OR661229 HMSC	Transient/Bigg's		т	A	9	Т	A	J	9	Т	L	J	J	Т
GU187162.1 ENPTSEA2	Transient/Bigg's													
DQ399075.1 NT1	Transient/Bigg's			g	A									
DQ399076.1 NT2	Transient/Bigg's		J	ŋ										
DQ399080.1 GAT 2	Transient/Bigg's			IJ				Т						
DQ399081.1 GAT	Transient/Bigg's			g										
DQ399082.1 AT1	Transient/Bigg's			U			9		A					
DQ399077.1 SR	Resident (Southern)	A		ŋ				Т	A	C	c		Т	
DQ399074.1 NEWR	Resident (Other)			9		c		Т	A	c	J		Т	
DQ399078.1 NR	Resident (Northern)	A		U				Т	A	C	c	Т	Т	
DQ399079.1 OFF	Offshore			g				Т	A	J	J		Т	ر د